OBSERVATIONS & RECOMMENDATIONS

Welcome back to the New Hampshire Volunteer Lake Assessment Program! Our records indicate that **ANGLE POND** was sampled through VLAP in **1986** and **1987**. Data from these years are included in this report. As your group continues to participate in VLAP over the years, the database created for your pond will help your monitoring group track water quality trends and will ultimately enable your group and DES to identify potential sources of pollutants from the watershed that may affect pond quality.

As a rule of thumb, *please* try to sample at least once per month during the summer months (**June**, **July**, and **August**). In addition, it may be necessary to conduct rain event sampling at multiple locations along a stream using the bracketing technique to pinpoint sources of pollution. Furthermore, baseline studies could involve bi-weekly or monthly sampling for an extended period of time. DES will let you know if this type of sampling is appropriate.

We understand that future sampling will depend upon volunteer availability, and your group's water monitoring goals and funding availability. We would like to point out that water quality trend analysis is not feasible with only a few data points. It will take many years to develop a statistically sound set of water quality baseline data. Specifically, after 10 consecutive years of participation in the program, we will be able to analyze the in-lake data with a simple statistical test to determine if there has been a significant change in the annual mean chlorophyll-a concentration, Secchi-disk transparency reading, and phosphorus concentration. Therefore, frequent and consistent sampling will ensure useful data for future analyses.

Please contact the VLAP Coordinator early this spring to schedule the annual DES lake visit. It would best to schedule the DES visit for early June to refresh your sampling skills!

We would like to encourage your monitoring group to formally participate in the DES Weed Watchers program, a volunteer program dedicated to monitoring lakes and ponds for the presence of exotic aquatic plants. Many of the lakes and ponds in your area of the state have exotic species infestation. This program only involves a small amount of time during the summer months. Volunteers survey their waterbody once a month from **June** through **September**. To survey, volunteers slowly boat, or even snorkel, around the perimeter of the waterbody and any islands it may contain. Using the materials provided in the Weed Watchers Kit, volunteers look for any species that are of suspicion. After a trip or two around the waterbody, volunteers will have a good knowledge of its plant community and will immediately notice even the most subtle changes. If a suspicious plant is found, the volunteers will send a specimen to DES for identification. If the plant specimen is an exotic, a biologist will visit the site to determine the extent of the problem and to formulate a plan of action to control the nuisance infestation. Remember that early detection is the key to controlling the spread of exotic plants.

If you would like to help protect your lake or pond from exotic plants, contact Amy Smagula, Exotic Species Program Coordinator, at 271-2248 or visit the Weed Watchers web page at www.des.state.nh.us/wmb/exoticspecies/survey.htm.

Finally, please remember that one of your most important responsibilities as a volunteer monitor is to educate your association, community, and town officials about the quality of your lake/pond and what can be done to protect it! DES Biologists may be able to assist you in educating your association members by attending your annual lake association meeting.

FIGURE INTERPRETATION

Figure 1 and Table 1: The graphs in Figure 1 (Appendix A) show the historical and current year chlorophyll-a concentration in the water column. Table 1 (Appendix B) lists the maximum, minimum, and mean concentration for each sampling season that the pond has been monitored through VLAP.

Chlorophyll-a, a pigment found in plants, is an indicator of the algal abundance. Because algae are usually microscopic plants that contain chlorophyll-a, and are naturally found in lake ecosystems, the chlorophyll-a concentration measured in the water gives an estimation of the algal concentration or lake productivity. **The**

median summer chlorophyll-a concentration for New Hampshire's lakes and ponds is 4.58 mg/m³.

The current year data (the top graph) show that the chlorophyll-a concentration on the **August** sampling event was **slightly less than** the state median and the similar lake median.

Overall, visual inspection of the historical data trend line (the bottom graph) shows a *slightly decreasing* (meaning *slightly improving*) in-lake chlorophyll-a trend since monitoring was originally conducted. However, please keep in mind that this trend is based on limited data. As your group expands its sampling program to include additional events each year will be able to determine trends with more accuracy and confidence. After 10 consecutive years of sample collection, we will be able to conduct a statistical analysis of the historical data to objectively determine if there has been a significant change in the annual mean chlorophyll-a concentration since monitoring began.

While algae are naturally present in all ponds, an excessive or increasing amount of any type is not welcomed. In freshwater ponds, phosphorus is the nutrient that algae depend upon for growth. Algal concentrations may increase with an increase in nonpoint sources of phosphorus loading from the watershed, or in-lake sources of phosphorus loading (such as phosphorus releases from the sediments). Therefore, it is extremely important for volunteer monitors to continually educate residents about how activities within the watershed can affect phosphorus loading and pond quality.

Figure 2 and Table 3: The graphs in Figure 2 (Appendix A) show historical and current year data for pond transparency. Table 3 (Appendix B) lists the maximum, minimum and mean transparency data for each sampling season that the pond has been monitored through the program.

Volunteer monitors use the Secchi-disk, a 20 cm disk with alternating black and white quadrants, to measure water clarity (how far a person can see into the water). Transparency, a measure of water clarity, can be affected by the amount of algae and sediment from erosion, as well as the natural colors of the water. The median summer transparency for New Hampshire's lakes and ponds is 3.2 meters.

The current year data (the top graph) show that the in-lake transparency on the **August** sampling event was **slightly less than** the state median and **less than** the similar lake median.

Overall, visual inspection of the historical data trend line (the bottom graph) shows a *variable* trend for in-lake transparency, meaning that the transparency has *fluctuated* since monitoring was originally conducted in 1986. Again, please keep in mind that this trend is based on only *two* years of data. As previously discussed, after 10 consecutive years of sample collection, we will be able to conduct a statistical analysis of the historical data to objectively determine if there has been a significant change in the annual mean transparency since monitoring began.

Typically, high intensity rainfall causes erosion of sediments into ponds and streams, thus decreasing clarity. Efforts should continually be made to stabilize stream banks, pond shorelines, disturbed soils within the watershed, and especially dirt roads located immediately adjacent to the edge of tributaries and the pond. Guides to Best Management Practices designed to reduce, and possibly even eliminate, nonpoint source pollutants, such as sediment loading, are available from DES upon request.

Figure 3 and Table 8: The graphs in Figure 3 (Appendix A) show the amount of phosphorus in the epilimnion (the upper layer) and the hypolimnion (the lower layer); the inset graphs show current year data. Table 8 (Appendix B) lists the annual maximum, minimum, and median concentration for each deep spot layer and each tributary since the lake/pond has joined the program.

Phosphorus is the limiting nutrient for plant and algae growth in New Hampshire's freshwater lakes and ponds. Too much phosphorus in a lake/pond can lead to increases in plant and algal growth over time. The median summer total phosphorus concentration in the epilimnion (upper layer) of New Hampshire's lakes and ponds is 12 ug/L. The median summer phosphorus concentration in the hypolimnion (lower layer) is 14 ug/L.

The current year data for the epilimnion (the top inset graph) show that the phosphorus concentration on the **August** sampling event was **less than** the state median but **greater than** the similar lake median.

Overall, visual inspection of the historical data trend line for the epilimnion shows a **stable** phosphorus trend since the pond was initially sampled in 1986.

The current year data for the hypolimnion (the bottom inset graph) show that the phosphorus concentration on the **August** sampling

event was **much greater than** the state median and similar lake median.

Overall, visual inspection of the historical data trend line for the hypolimnion shows an *increasing*, *meaning worsening*, trend which is *greater than* the state median and similar lake median since monitoring was initiated.

One of the most important approaches to reducing phosphorus loading to a waterbody is to continually educate watershed residents about its sources and how excessive amounts can adversely impact the ecology and value of lakes and ponds. Phosphorus sources within a pond's watershed typically include septic systems, animal waste, lawn fertilizer, road and construction erosion, and natural wetlands.

TABLE INTERPRETATION

> Table 2: Phytoplankton

Table 2 (Appendix B) lists the current and historical phytoplankton species observed in the pond. Specifically, this table lists the three most dominant phytoplankton species observed in the sample and their relative abundance in the sample.

The dominant phytoplankton species observed in the **August** sample were **Anabaena** (cyanobacteria), **Stephanodiscus** (diatom), and **Oscillatoria** (cyanobacteria).

Phytoplankton populations undergo a natural succession during the growing season (Please refer to the "Biological Monitoring Parameters" section of this report for a more detailed explanation regarding seasonal plankton succession). Diatoms and golden-brown algae are typical in New Hampshire's less productive lakes and ponds.

> Table 2: Cyanobacteria

The cyanobacterium **Anabaena** and **Oscillatoria** were two of the three most dominant species observed in the **August** plankton sample. In addition, a small amount of the cyanobacteria **Microcystis** was observed in the plankton sample. **These species, if present in large amounts, can be toxic to livestock, wildlife, pets, and humans.** (Please refer to the "Biological Monitoring Parameters" section of this report for a more detailed explanation regarding cyanobacteria).

Cyanobacteria can reach nuisance levels when phosphorus loading from the watershed to surface waters is increased (this is often caused by rain events) and favorable environmental conditions occur (such as a period of sunny, warm weather).

The presence of cyanobacteria serves as a reminder of the pond's delicate balance. Watershed residents should continue to act proactively to reduce nutrient loading to the pond by eliminating fertilizer use on lawns, keeping the pond shoreline natural, revegetating cleared areas within the watershed, and properly maintaining septic systems and roads.

In addition, residents should also observe the pond in September and October during the time of fall turnover (lake mixing) to document any algal blooms that may occur. Cyanobacteria have the ability to regulate their depth in the water column by producing or releasing gas from vesicles. However, occasionally lake mixing can affect their buoyancy and cause them to rise to the surface and bloom. Wind and currents tend to "pile" cyanobacteria into scums that accumulate in one section of the pond. If a fall bloom occurs, please collect a sample (any clean jar or bottle will be suitable) and contact the VLAP Coordinator.

Table 4: pH

Table 4 (Appendix B) presents the in-lake and tributary current year and historical pH data.

pH is measured on a logarithmic scale of 0 (acidic) to 14 (basic). pH is important to the survival and reproduction of fish and other aquatic life. A pH below 6.0 limits the growth and reproduction of fish. A pH between 6.0 and 7.0 is ideal for fish. The median pH value for the epilimnion (upper layer) in New Hampshire's lakes and ponds is **6.6**, which indicates that the surface waters in the state are slightly acidic. For a more detailed explanation regarding pH, please refer to the "Chemical Monitoring Parameters" section of this report.

The pH at the deep spot on the **August** sampling event ranged from **6.39** in the hypolimnion to **7.13** in the epilimnion, which means that the water is **slightly acidic near the pond bottom and approximately neutral near the surface.**

It is important to point out that the pH in the hypolimnion (lower layer) was *lower (more acidic)* than in the epilimnion (upper layer). This increase in acidity near the lake bottom is likely due the decomposition of organic matter and the release of acidic by-products into the water column.

Due to the presence of granite bedrock in the state and acid deposition (from snowmelt, rainfall, and atmospheric particulates) in

New Hampshire, there is not much that can be done to effectively increase pond pH.

> Table 5: Acid Neutralizing Capacity

Table 5 (Appendix B) presents the current year and historical epilimnetic ANC for each year the pond has been monitored through VLAP.

Buffering capacity (ANC) describes the ability of a solution to resist changes in pH by neutralizing the acidic input. The median ANC value for New Hampshire's lakes and ponds is **4.9 mg/L**, which indicates that many lakes and ponds in the state are at least "moderately vulnerable" to acidic inputs. For a more detailed explanation, please refer to the "Chemical Monitoring Parameters" section of this report.

The mean Acid Neutralizing Capacity (ANC) of the epilimnion (the upper layer) was **15.0 mg/L** on the **August** sampling event which is **much greater than** the state median. In addition, this indicates that the pond has a **low vulnerability** to acidic inputs (such as acid precipitation).

> Table 6: Conductivity

Table 6 (Appendix B) presents the current and historical conductivity values for tributaries and in-lake data. Conductivity is the numerical expression of the ability of water to carry an electric current (which is determined by the number of negatively charged ions from metals, salts, and minerals in the water column). The median conductivity value for New Hampshire's lakes and ponds is **40.0 uMhos/cm**. For a more detailed explanation, please refer to the "Chemical Monitoring Parameters" section of this report.

The conductivity in the epilimnion at the deep spot on the **August** sampling event was **233 uMhos/cm**, which is **much greater than** the state median and **much greater than** the **1986** result of **94 uMhos/cm**.

The conductivity has *increased* in the pond and the inlet tributaries since monitoring was originally conducted in 1986. Typically, sources of increased conductivity are due to human activity. These activities include septic systems, agricultural runoff, and road runoff (which contains road salt during the spring snow melt). New development in the watershed can alter runoff patterns and expose new soil and bedrock areas, which could contribute to increasing conductivity. In addition, natural sources, such as iron and manganese deposits in bedrock, can influence conductivity.

We recommend that your monitoring group conduct a shoreline conductivity survey of the lake and the tributaries to help pinpoint the sources of **elevated** conductivity.

To learn how to conduct a shoreline or tributary conductivity survey, please refer to the 2004 "Special Topic Article" or contact the VLAP Coordinator.

It is possible that de-icing materials applied to nearby roadways during the winter months may be influencing the conductivity in the lake/pond. In New Hampshire, the most commonly used de-icing material is salt (sodium chloride).

Therefore, we recommend that the **epilimnion** (upper layer) be sampled for chloride next season. We also recommend that your monitoring group sample the major inlets to pond to determine the conductivity and chloride levels of the streamflow. This sampling may help us pinpoint what areas of the watershed which are contributing to the increasing in-lake conductivity.

Please note that there will be an additional cost for each of the chloride samples. In addition, it is best to conduct chloride sampling in the spring as the snow is melting and during rain events.

> Table 8: Total Phosphorus

Table 8 (Appendix B) presents the current year and historical total phosphorus data for in-lake and tributary stations. Phosphorus is the nutrient that limits the algae's ability to grow and reproduce. Please refer to the "Chemical Monitoring Parameters" section of this report for a more detailed explanation.

The tributaries to the pond were not sampled on the August sampling event since most were not flowing. It would be best to sample the tributaries in the spring soon after snowmelt or after a rain event to determine the quality of water that flows into the pond.

> Table 9 and Table 10: Dissolved Oxygen and Temperature Data

Table 9 (Appendix B) shows the dissolved oxygen/temperature profile(s) for the 2005 sampling season. Table 10 (Appendix B) shows the historical and current year dissolved oxygen concentration in the hypolimnion (lower layer). The presence of dissolved oxygen is vital to fish and amphibians in the water column and also to bottom-dwelling organisms. Please refer to the "Chemical Monitoring Parameters" section of this report for a more detailed explanation.

The dissolved oxygen concentration was *lower in the hypolimnion* (*lower layer*) than in the epilimnion (upper layer) at the deep spot of the pond on the August sampling event. As stratified ponds age, and as the summer progresses, oxygen typically becomes depleted in the hypolimnion by the process of decomposition. Specifically, the loss of oxygen in the hypolimnion results primarily from the process of biological breakdown of organic matter (i.e.; biological organisms use oxygen to break down organic matter), both in the water column and particularly at the bottom of the pond where the water meets the sediment. When oxygen levels are depleted to less than 1 mg/L in the hypolimnion (as it was this season and in 1987), the phosphorus that is normally bound up in the sediment may be re-released into the water column (a process referred to as internal phosphorus loading).

The **low** oxygen level in the hypolimnion is a sign of the lake's/pond's **aging** and **declining** health. This year the DES biologist conducted the temperature/dissolved oxygen profile in **August**. We recommend that the annual biologist visit for the 2006 sampling season be scheduled for **June** so that we can determine if oxygen is depleted in the hypolimnion **earlier** in the sampling season.

> Table 11: Turbidity

Table 11 (Appendix B) lists the current year and historical data for inlake and tributary turbidity. Turbidity in the water is caused by suspended matter, such as clay, silt, and algae. Water clarity is strongly influenced by turbidity. Please refer to the "Other Monitoring Parameters" section of this report for a more detailed explanation.

The turbidity of the hypolimnion (lower layer) sample was **slightly elevated** (3 NTUs) on the **August** sampling event. This suggests that the lake/pond bottom may have been disturbed by the anchor or by the Kemmerer Bottle while sampling and/or that the lake bottom is covered by a thick organic layer of sediment which is easily disturbed. When the pond bottom is disturbed, sediment, which typically contains attached phosphorus, is released into the water column. When collecting the hypolimnion sample, make sure that there is no sediment in the Kemmerer Bottle before filling the sample bottles.

> Table 12: Bacteria (E.coli)

Table 12 lists the current year and historical data for bacteria (E.coli) testing. (Please note that Table 12 now lists the maximum and minimum results for this season and for all past sampling seasons.) E. coli is a normal bacterium found in the large intestine of humans and other warm-blooded animals. E.coli is used as an indicator organism because it is easily cultured and its presence in the water, in defined amounts, indicates that sewage MAY be present. If sewage is present in the water, potentially harmful disease-causing organisms MAY also be present.

Bacteria sampling was not conducted this year. If residents are concerned about sources of bacteria such as failing septic systems, animal waste, or waterfowl waste, it is best to conduct *E. coli* testing when the water table is high, when beach use is heavy, or immediately after rain events.

> Table 14: Current Year Biological and Chemical Raw Data

This table is a new addition to the Annual Report. This table lists the most current sampling season results. Since the maximum, minimum, and annual mean values for each parameter are not shown on this table, this table displays the current year "raw" (meaning unprocessed) data. The results are sorted by station, depth zone (epilimnion, metalimnion, and hypolimnion) and parameter.

> Table 15: Station Table

As of the Spring of 2004, all historical and current year VLAP data are included in the DES Environmental Monitoring Database (EMD). To facilitate the transfer of VLAP data into the EMD, a new station identification system had to be developed. While volunteer monitoring groups can still use the sampling station names that they have used in the past (and are most familiar with), an EMD station name also exists for each VLAP sampling location. For each station sampled at your lake or pond, Table 15 identifies what EMD station name corresponds to the station names you have used in the past and will continue to use in the future.

DATA QUALITY ASSURANCE AND CONTROL

Annual Assessment Audit:

During the annual visit to your pond, the biologist conducted a "Sampling Procedures Assessment Audit" for your monitoring group. Specifically, the biologist observed the performance of your monitoring group while sampling and filled out an assessment audit sheet to document the ability of the volunteer monitors to follow the proper field sampling procedures (as outlined in the VLAP Monitor's Field Manual). This assessment is used to identify any aspects of sample collection in which volunteer monitors fail to follow proper procedures, and also provides an opportunity for the biologist to retrain the volunteer monitors as necessary. This will ultimately ensure that the samples that the volunteer monitors collect are truly representative of actual lake and tributary conditions.

Overall, your monitoring group did an *excellent* job collecting samples on the annual biologist visit this season! Specifically, the members of your monitoring group mastered the proper field sampling procedures very quickly. We recommend that the 2006 annual biologist visit be scheduled for June so that you can refresh your sampling skills before sampling on your own in July and August. Please contact the VLAP Coordinator early this spring to schedule the annual DES lake visit.

USEFUL RESOURCES

Best Management Practices to Control Nonpoint Source Pollution: A Guide for Citizens and Town Officials, NHDES Booklet WD-03-42, (603) 271-2975.

Canada Geese Facts and Management Options, NHDES Fact Sheet BB-53, (603) 271-2975 or www.des.state.nh.us/factsheets/bb/bb-53.htm.

Cyanobacteria in New Hampshire Waters Potential Dangers of Blue-Green Algae Blooms, NHDES Fact Sheet WMB-10, (603) 271-2975 or www.des.state.nh.us/factsheets/wmb/wmb-10.htm.

Erosion Control for Construction in the Protected Shoreland Buffer Zone, NHDES Fact Sheet WD-SP-1, (603) 271-2975 or www.des.state.nh.us/factsheets/sp/sp-1.htm.

Impacts of Development Upon Stormwater Runoff, NHDES Fact Sheet WD-WQE-7, (603) 271-2975 or www.des.state.nh.us/factsheets/wqe/wqe-7.htm.

IPM: An Alternative to Pesticides, NHDES Fact Sheet WD-SP-3, (603) 271-2975 or www.des.state.nh.us/factsheets/sp/sp-3.htm.

Iron Bacteria in Surface Water, NHDES Fact Sheet WD-BB-18, (603) 271-2975 or www.des.state.nh.us/factsheets/bb/bb-18.htm.

Lake Foam, NHDES Fact Sheet WD-BB-4, (603) 271-2975 or www.des.state.nh.us/factsheets/bb/bb-5.htm.

Lake Protection Tips: Some Do's and Don'ts for Maintaining Healthy Lakes, NHDES Fact Sheet WD-BB-9, (603) 271-2975 or www.des.state.nh.us/factsheets/bb/bb-9.htm.

Low Impact Development: Taking Steps to Protect New Hampshire's Surface Waters NHDES Fact Sheet WD-WMB-16, (603) 271-2975 or www.des.state.nh.us/factsheets/wmb/wmb-17.htm.

Proper Lawn Care In the Protected Shoreland, The Comprehensive Shoreland Protection Act, NHDES Fact Sheet WD-SP-2, (603) 271-2975 or www.des.state.nh.us/factsheets/sp/sp-2.htm.

Road Salt and Water Quality, NHDES Fact Sheet WD-WMB-4, (603) 271-2975 or www.des.state.nh.us/factsheets/wmb/wmb-4.htm.

Sand Dumping - Beach Construction, NHDES Fact Sheet WD-BB-15, (603) 271-2975 or www.des.state.nh.us/factsheets/bb/bb-15.htm.

Shorelands Under the Jurisdiction of the Comprehensive Shoreland Protection Act, NHDES Fact Sheet SP-4, (603) 271-2975 or www.des.state.nh.us/factsheets/sp/sp-4.htm.

Weed Watchers: An Association to Halt the Spread of Exotic Aquatic Plants, NHDES Fact Sheet WD-BB-4, (603) 271-2975 or www.des.state.nh.us/factsheets/bb/bb-4.htm.